Rescue mission almost done docking part behaves weirdly)
This commit is contained in:
@@ -1,5 +1,3 @@
|
||||
from krpc.services.spacecenter import SASMode
|
||||
|
||||
import numpy as np
|
||||
from time import time, sleep
|
||||
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from krpc.services.spacecenter import SASMode
|
||||
|
||||
import numpy as np
|
||||
from time import time, sleep
|
||||
|
||||
from .utils import magnitude, unitary, kill_relative_velocity, kill_rcs_velocity, correct_course, get_safety_radius,\
|
||||
from .utils import magnitude, unitary, kill_relative_velocity_rcs, correct_course, get_safety_radius,\
|
||||
point_toward_direction
|
||||
|
||||
from . import Maneuver
|
||||
@@ -22,7 +21,7 @@ class ApproachRCSManeuver(Maneuver):
|
||||
vessel = sc.active_vessel
|
||||
target = sc.target_vessel
|
||||
|
||||
kill_rcs_velocity(vessel, self.reference_frame)
|
||||
kill_relative_velocity_rcs(vessel, target)
|
||||
|
||||
self.conn.drawing.add_direction((0, 1, 0), self.reference_frame)
|
||||
|
||||
@@ -57,9 +56,8 @@ class ApproachRCSManeuver(Maneuver):
|
||||
|
||||
|
||||
def move_to_waypoint(conn, vessel, waypoint, reference_frame):
|
||||
mj = conn.mech_jeb
|
||||
|
||||
kill_relative_velocity(conn, vessel, reference_frame)
|
||||
target = conn.space_center.target_vessel
|
||||
kill_relative_velocity_rcs(vessel, target)
|
||||
|
||||
conn.drawing.add_line(vessel.position(reference_frame), waypoint, reference_frame)
|
||||
waypoint = np.array(waypoint)
|
||||
@@ -82,14 +80,21 @@ def move_to_waypoint(conn, vessel, waypoint, reference_frame):
|
||||
vessel.control.forward = 0
|
||||
print("Target velocity achieved")
|
||||
|
||||
remaining_distance = distance - magnitude(start_position - vessel.position(reference_frame))
|
||||
while remaining_distance > acceleration_distance:
|
||||
sleep(.1)
|
||||
correct_course(conn, vessel, waypoint, reference_frame)
|
||||
remaining_distance = magnitude(waypoint - vessel.position(reference_frame))
|
||||
remaining_distance = distance - magnitude(start_position - vessel.position(reference_frame))
|
||||
print(remaining_distance)
|
||||
|
||||
print("Starting deceleration")
|
||||
kill_rcs_velocity(vessel, reference_frame)
|
||||
remaining_distance = distance - magnitude(start_position - vessel.position(reference_frame))
|
||||
vessel.control.forward = -1
|
||||
while remaining_distance > 0:
|
||||
sleep(.1)
|
||||
remaining_distance = distance - magnitude(start_position - vessel.position(reference_frame))
|
||||
vessel.control.forward = 0
|
||||
kill_relative_velocity_rcs(vessel, target)
|
||||
print("Ship decelerated")
|
||||
|
||||
print("destination position: {}".format(waypoint))
|
||||
|
||||
@@ -30,9 +30,9 @@ class ComsatManeuver(MechJebManeuver):
|
||||
raise NotImplementedError
|
||||
|
||||
if not math.isclose(vessel.orbit.apoapsis_altitude, self.target_altitude, rel_tol=.01):
|
||||
SetOrbitApoapsis(self.conn, vessel, self.target_body).prepare_maneuver()
|
||||
SetOrbitApoapsis(self.conn, self.mission_control, self.target_body).prepare_maneuver()
|
||||
elif not math.isclose(vessel.orbit.eccentricity, 0, abs_tol=.001) or self.vessel.control.current_stage > 1:
|
||||
CircularizeOrbitAndDeliver(self.conn, vessel, self.target_body).prepare_maneuver()
|
||||
CircularizeOrbitAndDeliver(self.conn, self.mission_control, self.target_body).prepare_maneuver()
|
||||
elif self.vessel.control.current_stage <= 1:
|
||||
return True
|
||||
|
||||
|
||||
@@ -1,128 +1,36 @@
|
||||
from time import sleep
|
||||
|
||||
from .utils import kill_relative_velocity, kill_rcs_velocity, correct_course, magnitude
|
||||
from .utils import kill_relative_velocity, kill_relative_velocity_rcs, correct_course, magnitude
|
||||
|
||||
from . import Maneuver
|
||||
|
||||
|
||||
class DockingManeuver(Maneuver):
|
||||
def __init__(self, conn, mission_control, docking_part, reference_frame):
|
||||
def __init__(self, conn, mission_control, docking_port, target_docking_port):
|
||||
super().__init__(conn, mission_control)
|
||||
self.docking_part = docking_part
|
||||
self.reference_frame = reference_frame
|
||||
self.mech_jeb = conn.mech_jeb
|
||||
self.docking_port = docking_port
|
||||
self.target_docking_port = target_docking_port
|
||||
|
||||
def start(self):
|
||||
vessel = self.conn.space_center.active_vessel
|
||||
self.conn.drawing.add_direction((0, 1, 0), self.reference_frame)
|
||||
self.conn.drawing.add_direction((1, 0, 0), self.reference_frame)
|
||||
vessel.parts.controlling = self.docking_part
|
||||
|
||||
kill_relative_velocity(self.conn, vessel, self.reference_frame)
|
||||
set_attitude_and_roll(self.conn, vessel, self.reference_frame)
|
||||
align_horizontally(self.conn, vessel, self.reference_frame)
|
||||
self.conn.space_center.active_vessel = self.mission_control.vessel
|
||||
vessel.parts.controlling = self.docking_port.part
|
||||
self.conn.space_center.target_docking_port = self.target_docking_port
|
||||
|
||||
print("Starting docking procedure")
|
||||
vessel.control.set_action_group(0, True)
|
||||
rcs_push(vessel, {"y": 1}, .5)
|
||||
da = self.mech_jeb.docking_autopilot
|
||||
da.speed_limit = 10
|
||||
da.roll = 0
|
||||
da.force_roll = True
|
||||
da.enabled = True
|
||||
|
||||
vessel.control.rcs = True
|
||||
try:
|
||||
while vessel.position(self.reference_frame)[1] > 0:
|
||||
print(vessel.position(self.reference_frame)[1])
|
||||
correct_course(self.conn, vessel, (0, 0, 0), self.reference_frame)
|
||||
sleep(1)
|
||||
except ValueError as e:
|
||||
vessel = self.conn.space_center.active_vessel
|
||||
finally:
|
||||
vessel.control.rcs = False
|
||||
sleep(1)
|
||||
|
||||
with self.conn.stream(getattr, da, "enabled") as enabled:
|
||||
enabled.rate = 1
|
||||
with enabled.condition:
|
||||
while enabled():
|
||||
enabled.wait()
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def set_attitude_and_roll(conn, vessel, reference_frame):
|
||||
fl = vessel.flight(reference_frame)
|
||||
vessel.control.rcs = False
|
||||
|
||||
ap = vessel.auto_pilot
|
||||
ap.reference_frame = reference_frame
|
||||
ap.target_direction = (0, -1, 0)
|
||||
ap.target_roll = 0
|
||||
ap.sas = False
|
||||
ap.engage()
|
||||
ap.wait()
|
||||
ap.disengage()
|
||||
|
||||
mj = conn.mech_jeb
|
||||
sa = mj.smart_ass
|
||||
|
||||
sa.autopilot_mode = mj.SmartASSAutopilotMode.target_plus
|
||||
sa.update(False)
|
||||
|
||||
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
|
||||
sleep(.1)
|
||||
|
||||
print("Ship pointing to dock")
|
||||
|
||||
|
||||
def rcs_push(vessel, axis, duration):
|
||||
vessel.control.rcs = True
|
||||
if "x" in axis:
|
||||
vessel.control.up = axis["x"]
|
||||
elif "y" in axis:
|
||||
vessel.control.forward = axis["y"]
|
||||
elif "z" in axis:
|
||||
vessel.control.right = axis["z"]
|
||||
sleep(duration)
|
||||
if "x" in axis:
|
||||
vessel.control.up = 0
|
||||
elif "y" in axis:
|
||||
vessel.control.forward = 0
|
||||
elif "z" in axis:
|
||||
vessel.control.right = 0
|
||||
|
||||
vessel.control.rcs = False
|
||||
|
||||
|
||||
def align_horizontally(conn, vessel, reference_frame):
|
||||
conn.drawing.add_direction((1, 0, 0), vessel.reference_frame)
|
||||
|
||||
while abs(vessel.position(reference_frame)[0]) > .1 \
|
||||
or abs(vessel.position(reference_frame)[2]) > .1:
|
||||
# determine power requirements of each
|
||||
sign_x = 1 if vessel.position(reference_frame)[0] > 0 else -1
|
||||
if abs(vessel.position(reference_frame)[0]) > 1:
|
||||
power_x = 1
|
||||
elif abs(vessel.position(reference_frame)[0]) > .1:
|
||||
power_x = .1
|
||||
else:
|
||||
power_x = 0
|
||||
sign_x = 0
|
||||
|
||||
sign_z = 1 if vessel.position(reference_frame)[2] > 0 else -1
|
||||
if abs(vessel.position(reference_frame)[2]) > 1:
|
||||
power_z = 1
|
||||
elif abs(vessel.position(reference_frame)[2]) > .1:
|
||||
power_z = .1
|
||||
else:
|
||||
power_z = 0
|
||||
sign_z = 0
|
||||
|
||||
axis = {}
|
||||
if power_x > 0:
|
||||
axis["x"] = -sign_x * power_x
|
||||
if power_z > 0:
|
||||
axis["z"] = sign_z * power_z
|
||||
|
||||
rcs_push(vessel, axis, 1)
|
||||
|
||||
while (sign_x > 0 and vessel.position(reference_frame)[0] > .1
|
||||
or sign_x < 0 and vessel.position(reference_frame)[0] < -.1
|
||||
or sign_x == 0) \
|
||||
and (sign_z > 0 and vessel.position(reference_frame)[2] > .1
|
||||
or sign_z < 0 and vessel.position(reference_frame)[2] < -.1
|
||||
or sign_z == 0):
|
||||
print(vessel.position(reference_frame))
|
||||
sleep(.1)
|
||||
|
||||
kill_rcs_velocity(vessel, reference_frame)
|
||||
print("Vertical alignment done!")
|
||||
|
||||
36
maneuvers/grapple.py
Normal file
36
maneuvers/grapple.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from time import sleep
|
||||
|
||||
from . import Maneuver
|
||||
from .utils import magnitude, correct_course_to_target, rcs_push, point_toward_target
|
||||
|
||||
|
||||
class GrappleManeuver(Maneuver):
|
||||
def __init__(self, conn, mission_control, target):
|
||||
super().__init__(conn, mission_control)
|
||||
self.target = target
|
||||
|
||||
def start(self):
|
||||
vessel = self.mission_control.vessel
|
||||
vessel.parts.controlling = self.mission_control.get_grappling()
|
||||
|
||||
point_toward_target(self.conn, vessel, self.target)
|
||||
|
||||
self.mission_control.toggle_grappling(True)
|
||||
rcs_push(vessel, {"y": 1}, .75)
|
||||
|
||||
vessel.control.rcs = True
|
||||
try:
|
||||
while magnitude(vessel.position(self.target.reference_frame)) > 0:
|
||||
print(magnitude(vessel.position(self.target.reference_frame)))
|
||||
sa = self.conn.mech_jeb.smart_ass
|
||||
sa.autopilot_mode = self.conn.mech_jeb.SmartASSAutopilotMode.relative_plus
|
||||
sa.update(False)
|
||||
correct_course_to_target(vessel, self.target)
|
||||
|
||||
except ValueError:
|
||||
vessel = self.conn.space_center.active_vessel
|
||||
self.mission_control.vessel = vessel
|
||||
finally:
|
||||
vessel.control.rcs = False
|
||||
|
||||
return True
|
||||
@@ -18,18 +18,18 @@ class RendezvousManeuver(MechJebManeuver):
|
||||
|
||||
if vessel.orbit.distance_at_closest_approach(target.orbit) > 1000:
|
||||
if vessel.orbit.relative_inclination(target.orbit) > 0.0001:
|
||||
AlignOrbitPlaneWithTarget(self.conn, vessel).prepare_maneuver()
|
||||
AlignOrbitPlaneWithTarget(self.conn, self.mission_control).prepare_maneuver()
|
||||
|
||||
elif vessel.orbit.distance_at_closest_approach(target.orbit) > 10000:
|
||||
InterceptTargetOrbit(self.conn, vessel).prepare_maneuver()
|
||||
InterceptTargetOrbit(self.conn, self.mission_control).prepare_maneuver()
|
||||
|
||||
else:
|
||||
TuneClosestApproach(self.conn, vessel).prepare_maneuver()
|
||||
TuneClosestApproach(self.conn, self.mission_control).prepare_maneuver()
|
||||
return False
|
||||
|
||||
elif vessel.orbit.distance_at_closest_approach(target.orbit) <= 1000 < magnitude(
|
||||
np.array(vessel.position(vessel.reference_frame)) - np.array(target.position(vessel.reference_frame))):
|
||||
MatchVelocityWithTarget(self.conn, vessel).prepare_maneuver()
|
||||
MatchVelocityWithTarget(self.conn, self.mission_control).prepare_maneuver()
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
@@ -1,7 +1,13 @@
|
||||
from time import time, sleep
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
from krpc.services.spacecenter import SASMode
|
||||
|
||||
from connector import get_connexion
|
||||
|
||||
|
||||
|
||||
def magnitude(vector):
|
||||
return np.linalg.norm(vector)
|
||||
@@ -65,43 +71,92 @@ def correct_course(conn, vessel, waypoint, reference_frame):
|
||||
vessel.control.up = 0
|
||||
|
||||
|
||||
def kill_rcs_velocity(vessel, reference_frame):
|
||||
print("Killing RCS velocity")
|
||||
velo = vessel.velocity(reference_frame)
|
||||
vessel.control.rcs = True
|
||||
while any(abs(component) > .05 for component in velo) > .05:
|
||||
if abs(velo[0]) > .05:
|
||||
sign = -velo[0] / abs(velo[0])
|
||||
if abs(velo[0]) > .1:
|
||||
vessel.control.up = 1 * sign
|
||||
elif abs(velo[0]) > .05:
|
||||
vessel.control.up = .1 * sign
|
||||
else:
|
||||
vessel.control.up = 0
|
||||
def correct_course_to_target(vessel, target):
|
||||
target_position = target.position(vessel.reference_frame)
|
||||
|
||||
if abs(velo[1]) > .05:
|
||||
sign = -velo[1] / abs(velo[1])
|
||||
if abs(velo[1]) > .1:
|
||||
angle_x = math.atan(target_position[0]/target_position[1])
|
||||
if math.isclose(angle_x, 0, abs_tol=0.05):
|
||||
vessel.control.right = 0
|
||||
elif angle_x < 0:
|
||||
vessel.control.right = -.1
|
||||
elif angle_x > 0:
|
||||
vessel.control.right = .1
|
||||
|
||||
angle_z = math.atan(target_position[2]/target_position[1])
|
||||
if math.isclose(angle_z, 0, abs_tol=0.05):
|
||||
vessel.control.up = 0
|
||||
elif angle_z < 0:
|
||||
vessel.control.up = .1
|
||||
elif angle_z > 0:
|
||||
vessel.control.up = -.1
|
||||
|
||||
|
||||
def kill_relative_velocity_rcs(vessel, target):
|
||||
print("Killing RCS velocity")
|
||||
|
||||
vessel.control.sas = True
|
||||
vessel.control.rcs = True
|
||||
|
||||
velocity = target.velocity(vessel.reference_frame)
|
||||
while any(abs(component) >= .1 for component in velocity):
|
||||
thrust = get_required_rcs_thrust(vessel, velocity)
|
||||
vessel.control.right = thrust[0] if abs(velocity[0]) >= .1 else 0
|
||||
vessel.control.forward = thrust[1] if abs(velocity[1]) >= .1 else 0
|
||||
vessel.control.up = - thrust[2] if abs(velocity[2]) >= .1 else 0
|
||||
|
||||
print(target.velocity(vessel.reference_frame))
|
||||
print((thrust[0], thrust[1], thrust[2]))
|
||||
print((vessel.control.right, vessel.control.forward, vessel.control.up))
|
||||
|
||||
sleep(.1)
|
||||
velocity = target.velocity(vessel.reference_frame)
|
||||
|
||||
continue
|
||||
if abs(velocity[0]) > .05:
|
||||
sign = velocity[0] / abs(velocity[0])
|
||||
if abs(velocity[0]) > 1:
|
||||
vessel.control.right = 1 * sign
|
||||
elif abs(velocity[0]) > .1:
|
||||
vessel.control.right = .1 * sign
|
||||
else:
|
||||
vessel.control.right = 0
|
||||
|
||||
if abs(velocity[1]) > .05:
|
||||
sign = velocity[1] / abs(velocity[1])
|
||||
if abs(velocity[1]) > 1:
|
||||
vessel.control.forward = 1 * sign
|
||||
elif abs(velo[1]) > .05:
|
||||
elif abs(velocity[1]) > .1:
|
||||
vessel.control.forward = .1 * sign
|
||||
else:
|
||||
vessel.control.forward = 0
|
||||
|
||||
if abs(velo[2]) > .05:
|
||||
sign = velo[2] / abs(velo[2])
|
||||
if abs(velo[2]) > .1:
|
||||
vessel.control.right = 1 * sign
|
||||
elif abs(velo[2]) > .05:
|
||||
vessel.control.right = .1 * sign
|
||||
if abs(velocity[2]) > .05:
|
||||
sign = - velocity[2] / abs(velocity[2])
|
||||
if abs(velocity[2]) > 1:
|
||||
vessel.control.up = 1 * sign
|
||||
elif abs(velocity[2]) > .1:
|
||||
vessel.control.up = .1 * sign
|
||||
else:
|
||||
vessel.control.right = 0
|
||||
vessel.control.up = 0
|
||||
sleep(.1)
|
||||
velo = vessel.velocity(reference_frame)
|
||||
velocity = target.velocity(vessel.reference_frame)
|
||||
vessel.control.rcs = False
|
||||
vessel.control.sas = False
|
||||
print("RCS velocity killed")
|
||||
|
||||
|
||||
def get_required_rcs_thrust(vessel, delta_v, polling=.1):
|
||||
acceleration = np.array(vessel.available_rcs_force) / vessel.mass
|
||||
thrust = [0, 0, 0]
|
||||
for i in range(3):
|
||||
if delta_v[i] >= 0:
|
||||
thrust[i] = max(min(delta_v[i] / acceleration[0][i]*polling, 1), .051)
|
||||
else:
|
||||
thrust[i] = min(max(-delta_v[i] / acceleration[1][i]*polling, -1), -.051)
|
||||
|
||||
return thrust
|
||||
|
||||
|
||||
def get_safety_radius(vessel):
|
||||
bbox = vessel.bounding_box(vessel.reference_frame)
|
||||
return max(magnitude(bbox[0]), magnitude(bbox[1]))
|
||||
@@ -112,6 +167,7 @@ def point_toward_direction(vessel, direction, reference_frame):
|
||||
ap.reference_frame = reference_frame
|
||||
ap.target_direction = unitary(direction)
|
||||
ap.target_roll = 0
|
||||
ap.rcs = False
|
||||
ap.sas = False
|
||||
ap.engage()
|
||||
sleep(1)
|
||||
@@ -119,4 +175,102 @@ def point_toward_direction(vessel, direction, reference_frame):
|
||||
|
||||
ap.disengage()
|
||||
ap.sas_mode = SASMode.stability_assist
|
||||
ap.sas = True
|
||||
ap.sas = True
|
||||
|
||||
|
||||
def point_toward_target(conn, vessel, target, force_roll=False):
|
||||
sa = conn.mech_jeb.smart_ass
|
||||
sa.autopilot_mode = conn.mech_jeb.SmartASSAutopilotMode.target_plus
|
||||
sa.force_roll = force_roll
|
||||
sa.update(False)
|
||||
while magnitude(vessel.angular_velocity(target.reference_frame)) > .002:
|
||||
sleep(.1)
|
||||
|
||||
|
||||
def rcs_push(vessel, axis, duration):
|
||||
vessel.control.rcs = True
|
||||
if "x" in axis:
|
||||
vessel.control.up = axis["x"]
|
||||
elif "y" in axis:
|
||||
vessel.control.forward = axis["y"]
|
||||
elif "z" in axis:
|
||||
vessel.control.right = axis["z"]
|
||||
sleep(duration)
|
||||
if "x" in axis:
|
||||
vessel.control.up = 0
|
||||
elif "y" in axis:
|
||||
vessel.control.forward = 0
|
||||
elif "z" in axis:
|
||||
vessel.control.right = 0
|
||||
|
||||
vessel.control.rcs = False
|
||||
|
||||
|
||||
def set_attitude_and_roll(conn, vessel, reference_frame):
|
||||
vessel.control.rcs = False
|
||||
|
||||
ap = vessel.auto_pilot
|
||||
ap.reference_frame = reference_frame
|
||||
ap.target_direction = (0, -1, 0)
|
||||
ap.target_roll = 0
|
||||
ap.sas = False
|
||||
ap.engage()
|
||||
ap.wait()
|
||||
ap.disengage()
|
||||
|
||||
mj = conn.mech_jeb
|
||||
sa = mj.smart_ass
|
||||
|
||||
sa.autopilot_mode = mj.SmartASSAutopilotMode.target_plus
|
||||
sa.update(False)
|
||||
|
||||
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
|
||||
sleep(.1)
|
||||
|
||||
print("Ship pointing to dock")
|
||||
|
||||
|
||||
def align_horizontally(conn, vessel, reference_frame):
|
||||
conn.drawing.add_direction((1, 0, 0), vessel.reference_frame)
|
||||
target = conn.space_center.target_vessel
|
||||
|
||||
while abs(vessel.position(reference_frame)[0]) > .1 \
|
||||
or abs(vessel.position(reference_frame)[2]) > .1:
|
||||
# determine power requirements of each
|
||||
sign_x = 1 if vessel.position(reference_frame)[0] > 0 else -1
|
||||
if abs(vessel.position(reference_frame)[0]) > 1:
|
||||
power_x = 1
|
||||
elif abs(vessel.position(reference_frame)[0]) > .1:
|
||||
power_x = .1
|
||||
else:
|
||||
power_x = 0
|
||||
sign_x = 0
|
||||
|
||||
sign_z = 1 if vessel.position(reference_frame)[2] > 0 else -1
|
||||
if abs(vessel.position(reference_frame)[2]) > 1:
|
||||
power_z = 1
|
||||
elif abs(vessel.position(reference_frame)[2]) > .1:
|
||||
power_z = .1
|
||||
else:
|
||||
power_z = 0
|
||||
sign_z = 0
|
||||
|
||||
axis = {}
|
||||
if power_x > 0:
|
||||
axis["x"] = -sign_x * power_x
|
||||
if power_z > 0:
|
||||
axis["z"] = sign_z * power_z
|
||||
|
||||
rcs_push(vessel, axis, 1)
|
||||
|
||||
while (sign_x > 0 and vessel.position(reference_frame)[0] > .1
|
||||
or sign_x < 0 and vessel.position(reference_frame)[0] < -.1
|
||||
or sign_x == 0) \
|
||||
and (sign_z > 0 and vessel.position(reference_frame)[2] > .1
|
||||
or sign_z < 0 and vessel.position(reference_frame)[2] < -.1
|
||||
or sign_z == 0):
|
||||
print(vessel.position(reference_frame))
|
||||
sleep(.1)
|
||||
|
||||
kill_relative_velocity_rcs(vessel, target)
|
||||
print("Vertical alignment done!")
|
||||
|
||||
Reference in New Issue
Block a user