Initial commit

This commit is contained in:
2023-08-25 00:44:19 +02:00
commit ac46f6e9e2
16 changed files with 1055 additions and 0 deletions

8
.idea/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

1
.idea/.name generated Normal file
View File

@@ -0,0 +1 @@
main.py

View File

@@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

10
.idea/kttd.iml generated Normal file
View File

@@ -0,0 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

4
.idea/misc.xml generated Normal file
View File

@@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9 (rocket_autopilot)" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml generated Normal file
View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/kttd.iml" filepath="$PROJECT_DIR$/.idea/kttd.iml" />
</modules>
</component>
</project>

35
calendar.py Normal file
View File

@@ -0,0 +1,35 @@
class Timeslot:
def __init__(self, ut_start, duration):
self.ut_start = ut_start
self.duration = duration
@property
def ut_end(self):
return self.ut_start + self.duration
@ut_end.setter
def ut_end(self, value):
self.duration = self.value - self.start
class Calendar:
def create_reservation(self, ut_start, duration, maneuver):
if not self.timeslot_is_free(ut_start, duration):
raise
pass
def timeslot_is_free(self, ut_start: int, duration: int) -> bool:
pass
def next_free_timeslot(self, from_ut, duration=None) -> int:
pass
def get_reservation(self, ut_at) -> Timeslot:
pass
def delete_reservation(self, ut_at, priority):
reservation = self.get_re(ut_at)
if priority <= reservation.priority:
raise

15
console.py Normal file
View File

@@ -0,0 +1,15 @@
from time import sleep
import numpy as np
from simple_pid import PID
import krpc
conn = krpc.connect()
sc = conn.space_center
vessel = sc.active_vessel
docking_part = vessel.parts.root.children[0].children[10].children[0].children[0].children[0].children[0]
target = sc.target_vessel
mj = conn.mech_jeb
sa = mj.smart_ass
reference_frame = sc.ReferenceFrame.create_relative(target.reference_frame, rotation=(1., 0., 0., 0.))
conn.drawing.add_direction((0, 1, 0), reference_frame)

16
main.py Normal file
View File

@@ -0,0 +1,16 @@
# This is a sample Python script.
# Press Maj+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm')
# See PyCharm help at https://www.jetbrains.com/help/pycharm/

0
maneuvers/__init__.py Normal file
View File

207
maneuvers/approach.py Normal file
View File

@@ -0,0 +1,207 @@
from krpc.services.spacecenter import SASMode
import numpy as np
from time import time, sleep
from utils import magnitude, kill_relative_velocity, correct_course
def unitary(vector):
return np.array(vector) / magnitude(vector)
def get_safety_radius(vessel):
bbox = vessel.bounding_box(vessel.reference_frame)
return max(magnitude(bbox[0]), magnitude(bbox[1]))
def point_toward_direction(vessel, direction, reference_frame):
ap = vessel.auto_pilot
ap.reference_frame = reference_frame
ap.target_direction = unitary(direction)
ap.target_roll = 0
ap.sas = False
ap.engage()
sleep(.1)
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
sleep(.1)
ap.disengage()
ap.sas_mode = SASMode.stability_assist
ap.sas = True
THROTTLE = .1
VELOCITY_TOLERANCE = .1
def thrust(vessel, delta_v, reference_frame):
print("Starting velocity change")
starting_velocity = magnitude(vessel.velocity(reference_frame))
vessel.control.throttle = THROTTLE
if delta_v < 0:
while magnitude(vessel.velocity(reference_frame)) - starting_velocity > delta_v + VELOCITY_TOLERANCE:
while magnitude(vessel.velocity(reference_frame)) - starting_velocity > delta_v + .3:
sleep(.01)
vessel.control.throttle = THROTTLE / 10
sleep(.01)
else:
while magnitude(vessel.velocity(reference_frame)) - starting_velocity < delta_v - VELOCITY_TOLERANCE:
while magnitude(vessel.velocity(reference_frame)) - starting_velocity < delta_v - .3:
sleep(.01)
vessel.control.throttle = THROTTLE / 10
sleep(.01)
vessel.control.throttle = 0
print("Velocity change achieved")
def move_to_waypoint(conn, vessel, waypoint, reference_frame):
mj = conn.mech_jeb
sa = mj.smart_ass
kill_relative_velocity(conn, vessel, reference_frame)
conn.drawing.add_line(vessel.position(reference_frame), waypoint, reference_frame)
waypoint = np.array(waypoint)
distance = magnitude(waypoint - vessel.position(reference_frame))
if distance > 250:
velocity = 10
elif distance > 50:
velocity = 5
elif distance > 25:
velocity = 2
else:
velocity = 1
direction = waypoint - np.array(vessel.position(reference_frame))
point_toward_direction(vessel, direction, reference_frame)
start_position = np.array(vessel.position(reference_frame))
print("Starting acceleration")
thrust(vessel, velocity, reference_frame)
print("Target velocity achieved")
acceleration_distance = magnitude(np.array(vessel.position(reference_frame)) - start_position)
sa.autopilot_mode = mj.SmartASSAutopilotMode.relative_minus
sa.update(False)
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
sleep(.1)
vessel.control.rcs = True
while magnitude(waypoint - vessel.position(reference_frame)) > acceleration_distance:
print(magnitude(waypoint - vessel.position(reference_frame)), " ", acceleration_distance)
sleep(.1)
correct_course(conn, vessel, waypoint, reference_frame)
vessel.control.rcs = False
vessel.control.up = 0
vessel.control.right = 0
print("Starting deceleration")
thrust(vessel, -velocity, reference_frame)
print("Ship decelerated")
#do positition correction
sa.autopilot_mode = mj.SmartASSAutopilotMode.off
sa.update(True)
print("destination position: {}".format(waypoint))
print("end position: {}".format(np.array(vessel.position(reference_frame))))
SAFETY_RADIUS_MARGIN = 10
def maneuver_to_approach(conn, reference_frame):
print("Handling approach")
sc = conn.space_center
vessel = sc.active_vessel
target = sc.target_vessel
kill_relative_velocity(conn, vessel, reference_frame)
conn.drawing.add_direction((0, 1, 0), reference_frame)
vessel.control.rcs = False
pv = vessel.position(reference_frame)
safety_radius = get_safety_radius(vessel) + get_safety_radius(target) + SAFETY_RADIUS_MARGIN
# if under and inside safety cylinder's circle
if pv[1] < safety_radius and pow(pv[0], 2) + pow(pv[2], 2) <= pow(safety_radius, 2):
print("We're under the target and inside the safety cylinder, getting out")
# get out of the cylinder
plane_move_vector = unitary(tuple((pv[0], pv[2]))) * (safety_radius - magnitude(tuple((pv[0], pv[2]))))
pv = vessel.position(reference_frame)
move_vector = np.array((plane_move_vector[0], 0, plane_move_vector[1]))
move_to_waypoint(conn, vessel, pv + move_vector, reference_frame)
print("We're outside of the safety cylinder, setting vertical distance")
pv = vessel.position(reference_frame)
move_to_waypoint(conn, vessel, (pv[0], safety_radius, pv[2]), reference_frame)
# should be above and outside => get inside
print("We're at the right vertical distance to the target, setting horizontal position")
move_to_waypoint(conn, vessel, (0, safety_radius, 0), reference_frame)
point_toward_direction(vessel, - np.array(vessel.position(reference_frame)), reference_frame)
print("Approach handled")
TARGET_VELOCITY = 2
def move_with_vector(conn, vessel, vector, reference_frame):
mj = conn.mech_jeb
sa = mj.smart_ass
kill_relative_velocity(conn, vessel, reference_frame)
position = np.array(vessel.position(reference_frame))
vector = np.array(vector)
destination = position + vector
conn.drawing.add_line(vessel.position(reference_frame), destination, reference_frame)
print("Pointing to acceleration")
point_toward_direction(vessel, unitary(vector), reference_frame)
print("Pointed")
trip_duration = magnitude(vector) / TARGET_VELOCITY
acceleration_start = time()
print("Starting acceleration")
vessel.control.throttle = THROTTLE
while magnitude(vessel.velocity(reference_frame)) < TARGET_VELOCITY:
sleep(.01)
vessel.control.throttle = 0
print("Target velocity achieved")
acceleration_duration = time() - acceleration_start
sa.autopilot_mode = mj.SmartASSAutopilotMode.relative_minus
sa.update(False)
while acceleration_duration < trip_duration - (time() - acceleration_start):
sleep(.01)
print("Starting deceleration")
vessel.control.throttle = THROTTLE
deceleration_start = time()
while time() - deceleration_start < acceleration_duration:
sleep(.01)
vessel.control.throttle = 0
print("Deceleration done")
sa.autopilot_mode = mj.SmartASSAutopilotMode.off
sa.update(False)
print("starting position: {}".format(position))
print("destination position: {}".format(destination))
print("end position: {}".format(np.array(vessel.position(reference_frame))))

156
maneuvers/docking.py Normal file
View File

@@ -0,0 +1,156 @@
from time import sleep
from utils import kill_relative_velocity, correct_course, magnitude
def set_attitude_and_roll(conn, vessel, reference_frame):
fl = vessel.flight(reference_frame)
vessel.control.rcs = False
ap = vessel.auto_pilot
ap.reference_frame = reference_frame
ap.target_direction = (0, -1, 0)
ap.target_roll = 0
ap.sas = False
ap.engage()
ap.wait()
ap.disengage()
mj = conn.mech_jeb
sa = mj.smart_ass
sa.autopilot_mode = mj.SmartASSAutopilotMode.target_plus
sa.update(False)
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
sleep(.1)
print("Ship pointing to dock")
def rcs_push(vessel, axis, duration):
vessel.control.rcs = True
if "x" in axis:
vessel.control.up = axis["x"]
elif "y" in axis:
vessel.control.forward = axis["y"]
elif "z" in axis:
vessel.control.right = axis["z"]
sleep(duration)
if "x" in axis:
vessel.control.up = 0
elif "y" in axis:
vessel.control.forward = 0
elif "z" in axis:
vessel.control.right = 0
vessel.control.rcs = False
def kill_rcs_velocity(vessel, reference_frame):
print("Killing RCS velocity")
velo = vessel.velocity(reference_frame)
vessel.control.rcs = True
while any(abs(component) > .05 for component in velo) > .05:
if abs(velo[0]) > .05:
sign = -velo[0] / abs(velo[0])
if abs(velo[0]) > .1:
vessel.control.up = 1 * sign
elif abs(velo[0]) > .05:
vessel.control.up = .1 * sign
else:
vessel.control.up = 0
if abs(velo[1]) > .05:
sign = -velo[1] / abs(velo[1])
if abs(velo[1]) > .1:
vessel.control.forward = 1 * sign
elif abs(velo[1]) > .05:
vessel.control.forward = .1 * sign
else:
vessel.control.forward = 0
if abs(velo[2]) > .05:
sign = velo[2] / abs(velo[2])
if abs(velo[2]) > .1:
vessel.control.right = 1 * sign
elif abs(velo[2]) > .05:
vessel.control.right = .1 * sign
else:
vessel.control.right = 0
sleep(.1)
velo = vessel.velocity(reference_frame)
vessel.control.rcs = False
print("RCS velocity killed")
def align_horizontally(conn, vessel, reference_frame):
conn.drawing.add_direction((1, 0, 0), vessel.reference_frame)
while abs(vessel.position(reference_frame)[0]) > .1 \
or abs(vessel.position(reference_frame)[2]) > .1:
# determine power requirements of each
sign_x = 1 if vessel.position(reference_frame)[0] > 0 else -1
if abs(vessel.position(reference_frame)[0]) > 1:
power_x = 1
elif abs(vessel.position(reference_frame)[0]) > .1:
power_x = .1
else:
power_x = 0
sign_x = 0
sign_z = 1 if vessel.position(reference_frame)[2] > 0 else -1
if abs(vessel.position(reference_frame)[2]) > 1:
power_z = 1
elif abs(vessel.position(reference_frame)[2]) > .1:
power_z = .1
else:
power_z = 0
sign_z = 0
axis = {}
if power_x > 0:
axis["x"] = -sign_x * power_x
if power_z > 0:
axis["z"] = sign_z * power_z
rcs_push(vessel, axis, 1)
while (sign_x > 0 and vessel.position(reference_frame)[0] > .1
or sign_x < 0 and vessel.position(reference_frame)[0] < -.1
or sign_x == 0) \
and (sign_z > 0 and vessel.position(reference_frame)[2] > .1
or sign_z < 0 and vessel.position(reference_frame)[2] < -.1
or sign_z == 0):
print(vessel.position(reference_frame))
sleep(.1)
kill_rcs_velocity(vessel, reference_frame)
print("Vertical alignment done!")
def dock_ship(conn, vessel, docking_part, reference_frame):
conn.drawing.add_direction((0, 1, 0), reference_frame)
conn.drawing.add_direction((1, 0, 0), reference_frame)
vessel.parts.controlling = docking_part
kill_relative_velocity(conn, vessel, reference_frame)
set_attitude_and_roll(conn, vessel, reference_frame)
align_horizontally(conn, vessel, reference_frame)
print("Starting docking procedure")
vessel.control.set_action_group(0, True)
rcs_push(vessel, {"y": 1}, .5)
vessel.control.rcs = True
try:
while vessel.position(reference_frame)[1] > 0:
print(vessel.position(reference_frame)[1])
correct_course(conn, vessel, (0, 0, 0), reference_frame)
sleep(1)
except ValueError as e:
vessel = conn.space_center.active_vessel
finally:
vessel.control.rcs = False

103
maneuvers/rendezvous.py Normal file
View File

@@ -0,0 +1,103 @@
import numpy as np
from utils import execute_node, magnitude
def align_orbit_planes(conn):
print("Aligning planes")
mj = conn.mech_jeb
mp = mj.maneuver_planner
oi = mp.operation_inclination
oi.time_selector.time_reference = mj.TimeReference.eq_nearest_ad
nodes = oi.make_nodes()
# kac = conn.kerbal_alarm_clock
# kac.create_alarm(
# kac.AlarmType.maneuver,
# "{}'s Orbital transfer".format(v.name),
# nodes[0].ut
# )
execute_node(conn)
print("Planes aligned!")
def intercepting_target_orbit(conn):
print("Intercepting target orbit")
sc = conn.space_center
v = sc.active_vessel
mj = conn.mech_jeb
mp = mj.maneuver_planner
ot = mp.operation_transfer
ot.time_selector.time_reference = mj.TimeReference.computed
nodes = ot.make_nodes()
nodes[0].ut = nodes[0].ut + 0.1
# kac = conn.kerbal_alarm_clock
# kac.create_alarm(
# kac.AlarmType.maneuver,
# "{}'s Orbital transfer".format(v.name),
# nodes[0].ut
# )
execute_node(conn)
print("Target orbit intercepted!")
def tune_closest_approach(conn):
print("Tuning closest approach")
sc = conn.space_center
v = sc.active_vessel
mj = conn.mech_jeb
mp = mj.maneuver_planner
occ = mp.operation_course_correction
nodes = occ.make_nodes()
# kac = conn.kerbal_alarm_clock
# kac.create_alarm(
# kac.AlarmType.maneuver,
# "{}'s Orbital transfer".format(v.name),
# nodes[0].ut
# )
execute_node(conn)
print("Closest approach tuned!")
def match_velocities(conn):
print("Matching velocities")
sc = conn.space_center
v = sc.active_vessel
mj = conn.mech_jeb
mp = mj.maneuver_planner
okrv = mp.operation_kill_rel_vel
nodes = okrv.make_nodes()
# kac = conn.kerbal_alarm_clock
# kac.create_alarm(
# kac.AlarmType.maneuver,
# "{}'s Orbital transfer".format(v.name),
# nodes[0].ut
# )
execute_node(conn)
print("Velocities matched!")
def maneuver_to_rendezvous(conn, vessel, target):
if vessel.orbit.distance_at_closest_approach(target.orbit) > 1000:
if vessel.orbit.relative_inclination(target.orbit) > 0.0001:
align_orbit_planes(conn)
if vessel.orbit.distance_at_closest_approach(target.orbit) > 10000:
intercepting_target_orbit(conn)
tune_closest_approach(conn)
if vessel.orbit.distance_at_closest_approach(target.orbit) <= 1000 < magnitude(
np.array(vessel.position(vessel.reference_frame)) - np.array(target.position(vessel.reference_frame))):
match_velocities(conn)

353
maneuvers/ssto.py Normal file
View File

@@ -0,0 +1,353 @@
from time import sleep
import numpy as np
import numpy.linalg as la
from simple_pid import PID
import krpc
conn = krpc.connect()
print(conn.krpc.get_status().version)
START_ALIGNMENT_SPEED = 900
def get_surface_prograde_pitch(sc, vessel):
import math
def cross(u, v):
return (
u[1] * v[2] - u[2] * v[1],
u[2] * v[0] - u[0] * v[2],
u[0] * v[1] - u[1] * v[0])
def dot(u, v):
return u[0] * v[0] + u[1] * v[1] + u[2] * v[2]
# these vectors are all in vessel.surface_reference_frame
north = (0, 1, 0)
east = (0, 0, 1)
surface_prograde = sc.transform_direction(
(0, 1, 0),
vessel.surface_velocity_reference_frame,
vessel.surface_reference_frame)
plane_normal = cross(north, east)
return math.asin(dot(plane_normal, surface_prograde)) * (180.0 / math.pi)
def lift_off(conn, altitude=100000):
sc = conn.space_center
mj = conn.mech_jeb
ascent = mj.ascent_autopilot
ascent.desired_orbit_altitude = altitude
ascent.desired_inclination = 0
ascent.force_roll = True
ascent.vertical_roll = 0
ascent.turn_roll = 0
ascent.autostage = False
ascent.skip_circularization = True
ascent.enabled = True
sc.active_vessel.control.activate_next_stage()
print("We have lift off!")
def orbit(conn):
sc = conn.space_center
mj = conn.mech_jeb
ascent = mj.ascent_autopilot
planner = mj.maneuver_planner
v = sc.active_vessel
with conn.stream(getattr, ascent, "status") as status:
status.rate = 1
with status.condition:
while status() != 'Off':
print(status())
status.wait()
v.control.rcs = True
v.control.set_action_group(1, True)
executor = mj.node_executor
executor.tolerance = 1
circ = planner.operation_circularize
circ.time_selector.time_reference = mj.TimeReference.apoapsis
circ.make_nodes()
executor.execute_all_nodes()
with conn.stream(getattr, executor, "enabled") as enabled:
enabled.rate = 1
with enabled.condition:
while enabled():
enabled.wait()
print("Orbit complete!")
def dropping_payload(conn):
print("Dropping payload")
sc = conn.space_center
v = sc.active_vessel
ctrl = v.control
payload = ctrl.activate_next_stage()
payload = payload[0]
ctrl.up = -1
with conn.stream(payload.position, v.reference_frame) as payload_position:
payload_position.rate = 1
far_enough = False
while not far_enough:
displacement = np.array(payload_position())
distance = la.norm(displacement)
far_enough = distance > 20
ctrl.up = 0
print("Payload Dropped")
def is_longitude_in_target_range(long, target, range):
if target - range <= -180:
return long < target + range or long > 180 - (-180 - (target - range))
elif target + range > 180:
return long > target - range or long < -180 + (180 - (target + range))
return target - range < long < target + range
TARGET_DEORBIT_NODE_LONGITUDE = 178
def deorbit(conn):
sc = conn.space_center
v = sc.active_vessel
o = v.orbit
b = o.body
surface_rf = b.reference_frame
node = v.control.add_node(sc.ut + 300, -100)
longitude_at = b.longitude_at_position(o.position_at(node.ut, surface_rf), surface_rf)
while not is_longitude_in_target_range(longitude_at, TARGET_DEORBIT_NODE_LONGITUDE, 10):
node.ut = node.ut + 10
longitude_at = b.longitude_at_position(o.position_at(node.ut, surface_rf), surface_rf)
while not is_longitude_in_target_range(longitude_at, TARGET_DEORBIT_NODE_LONGITUDE, 1):
node.ut = node.ut + 1
longitude_at = b.longitude_at_position(o.position_at(node.ut, surface_rf), surface_rf)
print("Maneuver created")
mj = conn.mech_jeb
executor = mj.node_executor
executor.tolerance = 1
executor.execute_one_node()
with conn.stream(getattr, executor, "enabled") as enabled:
enabled.rate = 1
with enabled.condition:
while enabled():
enabled.wait()
v.control.activate_next_stage()
sc.rails_warp_factor = 7
print("Ship deorbited")
REENTRY_PITCH_0_SPEED = 1900
REENTRY_PITCH_PROP_SPEED = 600
CHECKPOINTS = [30000, 20000, 10000]
def reentry(conn):
print("Handling reentry")
sc = conn.space_center
v = sc.active_vessel
mj = conn.mech_jeb
sa = mj.smart_ass
sa.autopilot_mode = mj.SmartASSAutopilotMode.surface
sa.surface_heading = 90
sa.force_heading = True
sa.force_pitch = True
sa.surface_roll = 0
sa.force_roll = True
sa.update(True)
altitude = v.flight().surface_altitude
old_altitude = altitude
with conn.stream(v.velocity, v.orbit.body.reference_frame) as velocity:
velocity.rate = 1
with velocity.condition:
speed = la.norm(np.array(velocity()))
while speed > START_ALIGNMENT_SPEED:
if speed < REENTRY_PITCH_0_SPEED:
if sa.surface_pitch > 0:
sa.surface_pitch = 0
sa.update(False)
else:
if sa.surface_pitch != 5:
sa.surface_pitch = 5
sa.update(False)
altitude = v.flight().surface_altitude
for point in CHECKPOINTS:
if old_altitude > point > altitude:
# sc.save(str(point))
# sc.quicksave()
print("Checkpoint {}: v={} t={}".format(point, speed, v.parts.all[11].skin_temperature))
break
old_altitude = altitude
velocity.wait()
speed = la.norm(np.array(velocity()))
v.control.rcs = False
print("Reentry completed")
def alignment(conn):
print("Starting alignment")
sc = conn.space_center
v = sc.active_vessel
b = v.orbit.body
mj = conn.mech_jeb
sa = mj.smart_ass
ref = b.reference_frame
target_lat = -0.0485997
factor = 5
limit_heading = 5
limit_roll = 3
pid_h = PID(9, .005, .05, setpoint=target_lat, output_limits=[-limit_heading / factor, limit_heading / factor])
with open('track.csv', 'w') as track_file:
while v.flight().surface_altitude > 4000:
current_lat = b.latitude_at_position(v.position(ref), ref)
diff = str(target_lat - current_lat).replace('.', ',')
print(target_lat - current_lat)
track_file.write("{};\n".format(diff))
control = pid_h(current_lat)
correction = control * factor
sa.surface_heading = 90 - correction
sa.surface_roll = min(-correction, limit_roll) if correction < 0 else max(-correction, -limit_roll)
sa.surface_pitch = min(get_surface_prograde_pitch(sc, v) + 7, 0)
sa.update(False)
sleep(1)
v.control.gear = True
print("Alignment done")
def final_approach(conn):
print("Final approach")
sc = conn.space_center
v = sc.active_vessel
b = v.orbit.body
mj = conn.mech_jeb
sa = mj.smart_ass
ref = b.reference_frame
airstrip_position = b.surface_position(-0.0485997, -74.724375, ref)
airstrip_altitude = b.surface_height(0-.0485997, -74.724375)
target_vspeed = 40
h_speed = v.flight(ref).horizontal_speed
target_lat = -0.0485997
factor = 5
limit_heading = 5
limit_roll = 3
pid_h = PID(9, .005, .05, setpoint=target_lat, output_limits=[-limit_heading / factor, limit_heading / factor])
pid_vh = PID(.5, .1, .05, setpoint=h_speed, output_limits=[0, 1])
while v.flight().surface_altitude > 100:
ship_position = v.position(ref)
conn.drawing.add_line(airstrip_position, ship_position, ref)
distance = np.linalg.norm(np.array(ship_position) - np.array(airstrip_position))
height = v.flight(ref).mean_altitude - airstrip_altitude
# angle = math.acos(height/distance)
current_vspeed = v.flight(v.orbit.body.reference_frame).vertical_speed
current_hspeed = v.flight(v.orbit.body.reference_frame).horizontal_speed
# target_hspeed = current_vspeed * math.cos(angle) * -1
target_hspeed = current_vspeed * (distance / height) * -1
pid_vh.setpoint = target_hspeed
control = pid_vh(current_hspeed)
v.control.throttle = control
current_lat = b.latitude_at_position(v.position(ref), ref)
control = pid_h(current_lat)
correction = control * factor
sa.surface_heading = 90 - correction
sa.surface_roll = min(-correction, limit_roll) if correction < 0 else max(-correction, -limit_roll)
sa.surface_pitch = min(get_surface_prograde_pitch(sc, v) + 7, 0)
sa.update(False)
sleep(1)
# pid_vs = PID(.5, .1, .05, setpoint=5)
while v.situation == sc.VesselSituation.flying:
# current_vertical_speed = v.flight(ref).vertical_speed
# control_pitch = pid_vs(current_vertical_speed)
sa.surface_heading = 90
sa.surface_roll = 0
sa.surface_pitch = 0
sa.update(False)
sleep(1)
v.control.brakes = True
sa.autopilot_mode = mj.SmartASSAutopilotMode.off
print("Landed!!")
# check status to determine course of actions
sc = conn.space_center
v = sc.active_vessel
if v.situation == sc.VesselSituation.pre_launch:
lift_off(conn)
mj = conn.mech_jeb
ascent = mj.ascent_autopilot
if ascent.status and ascent.status != 'Off':
orbit(conn)
if v.control.current_stage == 3:
dropping_payload(conn)
if v.control.current_stage == 2 and v.situation == sc.VesselSituation.orbiting:
deorbit(conn)
current_velocity = la.norm(np.array(v.velocity(v.orbit.body.reference_frame)))
is_in_reentry = v.situation == sc.VesselSituation.sub_orbital \
or v.situation == sc.VesselSituation.flying and current_velocity > START_ALIGNMENT_SPEED
if v.control.current_stage == 1 and is_in_reentry:
reentry(conn)
if v.situation == sc.VesselSituation.flying and v.flight().surface_altitude > 4000:
alignment(conn)
final_approach(conn)
conn.close()

65
maneuvers/tugship.py Normal file
View File

@@ -0,0 +1,65 @@
from time import sleep
import numpy as np
import numpy.linalg as la
# from docking import *
from utils import magnitude
from rendezvous import maneuver_to_rendezvous
from approach import maneuver_to_approach
from docking import dock_ship
import krpc
conn = krpc.connect()
print(conn.krpc.get_status().version)
def undock(conn):
print('Undocking')
sc = conn.space_center
v = sc.active_vessel
target = sc.target_vessel
decouplers = [d for d in v.parts.decouplers if d.staged and not d.decoupled]
tugship = decouplers[-1].decouple()
sc.active_vessel = tugship
v = sc.active_vessel
v.name = "Tugship " + target.name
sc.target_vessel = target
v.control.throttle = 0
v.control.rcs = True
v.control.up = -1
sleep(5)
v.control.up = 0
v.control.solar_panels = True
v.parts.engines[0].active = True
print('Undocking sequence finished')
sc = conn.space_center
vessel = sc.active_vessel
target = sc.target_vessel
if vessel.name == "TugGrape":
if target is None:
print("Must set a target")
exit(1)
undock(conn)
maneuver_to_rendezvous(conn, vessel, target)
reference_frame = sc.ReferenceFrame.create_relative(target.reference_frame, rotation=(1., 0., 0., 0.))
if magnitude(vessel.position(vessel.reference_frame) - np.array(target.position(vessel.reference_frame))) < 1000:
maneuver_to_approach(conn, reference_frame)
docking_part = vessel.parts.root.children[0].children[10].children[0].children[0].children[0].children[0]
dock_ship(conn, vessel, docking_part, reference_frame)
conn.close()

68
maneuvers/utils.py Normal file
View File

@@ -0,0 +1,68 @@
from time import time, sleep
import numpy as np
def execute_node(conn):
ne = conn.mech_jeb.node_executor
ne.execute_all_nodes()
with conn.stream(getattr, ne, "enabled") as enabled:
enabled.rate = 1
with enabled.condition:
while enabled():
enabled.wait()
def magnitude(vector):
return np.linalg.norm(vector)
THROTTLE = .1
def kill_relative_velocity(conn, vessel, reference_frame):
mj = conn.mech_jeb
sa = mj.smart_ass
vessel.control.throttle = 0
print("Killing relative velocity")
while magnitude(vessel.velocity(reference_frame)) > .05:
sa.autopilot_mode = mj.SmartASSAutopilotMode.relative_minus
sa.update(False)
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
sleep(.1)
vessel.control.throttle = THROTTLE if magnitude(vessel.velocity(reference_frame)) > 1 else THROTTLE / 10
current_speed = magnitude(vessel.velocity(reference_frame))
previous_speed = current_speed
while current_speed <= previous_speed:
sleep(.1)
previous_speed = current_speed
current_speed = magnitude(vessel.velocity(reference_frame))
vessel.control.throttle = 0
print("Relative velocity killed")
sa.autopilot_mode = mj.SmartASSAutopilotMode.off
sa.update(False)
def correct_course(conn, vessel, waypoint, reference_frame):
waypoint = np.array(conn.space_center.transform_position(tuple(waypoint), reference_frame, vessel.reference_frame))
waypoint_x = round(waypoint[0], 0)
if waypoint_x < 0:
vessel.control.right = -.1
elif waypoint_x > 0:
vessel.control.right = .1
else:
vessel.control.right = 0
waypoint_z = round(waypoint[2], 0)
if waypoint_z < 0:
vessel.control.up = .1
elif waypoint_z > 0:
vessel.control.up = -.1
else:
vessel.control.up = 0