Files
kttd/maneuvers/utils.py

277 lines
8.2 KiB
Python

from time import time, sleep
import math
import numpy as np
from krpc.services.spacecenter import SASMode
from connector import get_connexion
def magnitude(vector):
return np.linalg.norm(vector)
def node_thrust_time(vessel, node):
return (node.delta_v * vessel.mass) / vessel.available_thrust
def unitary(vector):
return np.array(vector) / magnitude(vector)
THROTTLE = .1
def kill_relative_velocity(conn, vessel, reference_frame):
mj = conn.mech_jeb
sa = mj.smart_ass
vessel.control.throttle = 0
print("Killing relative velocity")
while magnitude(vessel.velocity(reference_frame)) > .05:
sa.autopilot_mode = mj.SmartASSAutopilotMode.relative_minus
sa.update(False)
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
sleep(.1)
vessel.control.throttle = THROTTLE if magnitude(vessel.velocity(reference_frame)) > 1 else THROTTLE / 10
current_speed = magnitude(vessel.velocity(reference_frame))
previous_speed = current_speed
while current_speed <= previous_speed:
sleep(.1)
previous_speed = current_speed
current_speed = magnitude(vessel.velocity(reference_frame))
vessel.control.throttle = 0
print("Relative velocity killed")
sa.autopilot_mode = mj.SmartASSAutopilotMode.off
sa.update(False)
def correct_course(conn, vessel, waypoint, reference_frame):
waypoint = np.array(conn.space_center.transform_position(tuple(waypoint), reference_frame, vessel.reference_frame))
waypoint_x = round(waypoint[0], 0)
if waypoint_x < 0:
vessel.control.right = -.1
elif waypoint_x > 0:
vessel.control.right = .1
else:
vessel.control.right = 0
waypoint_z = round(waypoint[2], 0)
if waypoint_z < 0:
vessel.control.up = .1
elif waypoint_z > 0:
vessel.control.up = -.1
else:
vessel.control.up = 0
def correct_course_to_target(vessel, target):
target_position = target.position(vessel.reference_frame)
angle_x = math.atan(target_position[0]/target_position[1])
if math.isclose(angle_x, 0, abs_tol=0.05):
vessel.control.right = 0
elif angle_x < 0:
vessel.control.right = -.1
elif angle_x > 0:
vessel.control.right = .1
angle_z = math.atan(target_position[2]/target_position[1])
if math.isclose(angle_z, 0, abs_tol=0.05):
vessel.control.up = 0
elif angle_z < 0:
vessel.control.up = .1
elif angle_z > 0:
vessel.control.up = -.1
def kill_relative_velocity_rcs(vessel, target):
print("Killing RCS velocity")
vessel.control.sas = True
vessel.control.rcs = True
velocity = target.velocity(vessel.reference_frame)
while any(abs(component) >= .1 for component in velocity):
thrust = get_required_rcs_thrust(vessel, velocity)
vessel.control.right = thrust[0] if abs(velocity[0]) >= .1 else 0
vessel.control.forward = thrust[1] if abs(velocity[1]) >= .1 else 0
vessel.control.up = - thrust[2] if abs(velocity[2]) >= .1 else 0
print(target.velocity(vessel.reference_frame))
print((thrust[0], thrust[1], thrust[2]))
print((vessel.control.right, vessel.control.forward, vessel.control.up))
sleep(.1)
velocity = target.velocity(vessel.reference_frame)
continue
if abs(velocity[0]) > .05:
sign = velocity[0] / abs(velocity[0])
if abs(velocity[0]) > 1:
vessel.control.right = 1 * sign
elif abs(velocity[0]) > .1:
vessel.control.right = .1 * sign
else:
vessel.control.right = 0
if abs(velocity[1]) > .05:
sign = velocity[1] / abs(velocity[1])
if abs(velocity[1]) > 1:
vessel.control.forward = 1 * sign
elif abs(velocity[1]) > .1:
vessel.control.forward = .1 * sign
else:
vessel.control.forward = 0
if abs(velocity[2]) > .05:
sign = - velocity[2] / abs(velocity[2])
if abs(velocity[2]) > 1:
vessel.control.up = 1 * sign
elif abs(velocity[2]) > .1:
vessel.control.up = .1 * sign
else:
vessel.control.up = 0
sleep(.1)
velocity = target.velocity(vessel.reference_frame)
vessel.control.rcs = False
vessel.control.sas = False
print("RCS velocity killed")
def get_required_rcs_thrust(vessel, delta_v, polling=.1):
acceleration = np.array(vessel.available_rcs_force) / vessel.mass
thrust = [0, 0, 0]
for i in range(3):
if delta_v[i] >= 0:
thrust[i] = max(min(delta_v[i] / acceleration[0][i]*polling, 1), .051)
else:
thrust[i] = min(max(-delta_v[i] / acceleration[1][i]*polling, -1), -.051)
return thrust
def get_safety_radius(vessel):
bbox = vessel.bounding_box(vessel.reference_frame)
return max(magnitude(bbox[0]), magnitude(bbox[1]))
def point_toward_direction(vessel, direction, reference_frame):
ap = vessel.auto_pilot
ap.reference_frame = reference_frame
ap.target_direction = unitary(direction)
ap.target_roll = 0
ap.rcs = False
ap.sas = False
ap.engage()
sleep(1)
ap.wait()
ap.disengage()
ap.sas_mode = SASMode.stability_assist
ap.sas = True
def point_toward_target(conn, vessel, target, force_roll=False):
sa = conn.mech_jeb.smart_ass
sa.autopilot_mode = conn.mech_jeb.SmartASSAutopilotMode.target_plus
sa.force_roll = force_roll
sa.update(False)
while magnitude(vessel.angular_velocity(target.reference_frame)) > .002:
sleep(.1)
def rcs_push(vessel, axis, duration):
vessel.control.rcs = True
if "x" in axis:
vessel.control.up = axis["x"]
elif "y" in axis:
vessel.control.forward = axis["y"]
elif "z" in axis:
vessel.control.right = axis["z"]
sleep(duration)
if "x" in axis:
vessel.control.up = 0
elif "y" in axis:
vessel.control.forward = 0
elif "z" in axis:
vessel.control.right = 0
vessel.control.rcs = False
def set_attitude_and_roll(conn, vessel, reference_frame):
vessel.control.rcs = False
ap = vessel.auto_pilot
ap.reference_frame = reference_frame
ap.target_direction = (0, -1, 0)
ap.target_roll = 0
ap.sas = False
ap.engage()
ap.wait()
ap.disengage()
mj = conn.mech_jeb
sa = mj.smart_ass
sa.autopilot_mode = mj.SmartASSAutopilotMode.target_plus
sa.update(False)
while magnitude(vessel.angular_velocity(reference_frame)) > .1:
sleep(.1)
print("Ship pointing to dock")
def align_horizontally(conn, vessel, reference_frame):
conn.drawing.add_direction((1, 0, 0), vessel.reference_frame)
target = conn.space_center.target_vessel
while abs(vessel.position(reference_frame)[0]) > .1 \
or abs(vessel.position(reference_frame)[2]) > .1:
# determine power requirements of each
sign_x = 1 if vessel.position(reference_frame)[0] > 0 else -1
if abs(vessel.position(reference_frame)[0]) > 1:
power_x = 1
elif abs(vessel.position(reference_frame)[0]) > .1:
power_x = .1
else:
power_x = 0
sign_x = 0
sign_z = 1 if vessel.position(reference_frame)[2] > 0 else -1
if abs(vessel.position(reference_frame)[2]) > 1:
power_z = 1
elif abs(vessel.position(reference_frame)[2]) > .1:
power_z = .1
else:
power_z = 0
sign_z = 0
axis = {}
if power_x > 0:
axis["x"] = -sign_x * power_x
if power_z > 0:
axis["z"] = sign_z * power_z
rcs_push(vessel, axis, 1)
while (sign_x > 0 and vessel.position(reference_frame)[0] > .1
or sign_x < 0 and vessel.position(reference_frame)[0] < -.1
or sign_x == 0) \
and (sign_z > 0 and vessel.position(reference_frame)[2] > .1
or sign_z < 0 and vessel.position(reference_frame)[2] < -.1
or sign_z == 0):
print(vessel.position(reference_frame))
sleep(.1)
kill_relative_velocity_rcs(vessel, target)
print("Vertical alignment done!")